
METAPOST: terminally ill or just playing dead?

Taco Hoekwater
Dordrecht, The Netherlands
taco@elvenkind.com

Abstract

In recent years, there is evidence of a renewed interest in the use of METAPOST
for various drawing tasks. Simultaneously, it seems that just about every
METAPOST user runs into some kind of limitation that makes the use of
METAPOST far from ideal for the proposed task.

The diagnosis we have to make is whether these symptoms indicate a fatal
disease in the program, or if they are only idiosyncracies and scratches that can
be cured with some therapy and a few band-aids.

1 Introduction

When a software program is not used very often,
or when the users complain a lot, there are a few
potential causes.

The first of those causes is lack of knowledge:
if you do not know that a certain program exists
nor what it does, you obviously do not know how to
use it. Since the focus of this paper is to assess the
qualities of metapost itself, I will not go deeper into
ways to make metapost more known.

The second cause is lack of abilities: if you know
that a program exists and what it does, but that list
of features does not actually fit your needs, then you
will not use the program. Requested features are the
subject of the immediately following section.

The third cause is lack of quality: if you know
that a program exists and what it supposedly does
fits your needs, then you might still not want to
use it, because it may not be of sufficient quality to
perform the tasks you believe it should be able to
do. Software quality is the subject of the second,
fairly long section.

For completeness I want to mention a fourth
cause: lack of willingness. You know that a program
exists and what it does actually does fit you needs,
but you are unwilling to use it. This can be a matter
of taste or even threshold fever. Just like lack of
knowledge, this is also outside of the scope of this
examination. Metapost is the patient here, not the
user.

2 Abilities

There is of course lots and lots of stuff that metapost
cannot do. But lets start by stating that metapost
is a programmable and therefore batch-oriented
general-purpose drawing tool. That way, we can

forget about interactive wireframe modelling and
fractal visualization.

What follows is fairly small list of desires that
are expressed regularly by (ex-)users of metapost. It
lists most often heard requests only.

2.1 Dynamic data limits

In this day and age, it is weird that we use a
program that still depends on static allocation of
memory and therefore stops with an ‘out of memory’
error when only a fraction of the available memory
is actually used. Ideally, all memory should be
allocated dynamically, thereby making the best use
of the hardware at hand.

Even more restrictive is that the maximum
integer value is 16384, and the fractional precision
is only six digits. In a drawing program, this is a
severe limitation, especially when external data has
to be plotted. Points in a data file can come in
many units, most of which are not easily rearranged
to fit in metapost’s data model. While there are
some workarounds avaiable as macro packages, this
would be better solved in the actual program code.

2.2 3-D support

Quite possibly this is the most often asked for
extension. But it is also by far the most vaguely
formulated one. As of now, I am not aware of
anybody who has written down a clear list of
demands stating: ‘this is what I need for the drawing
I want to make, please do it like so’.

Instead it goes like: ‘Metapost should support
3D, because that would make it a better program’.
Until someone is found who knows how to formulate
a functional design, it seems unlikely that we will see
a metapost with extra 3d support.

TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting 1001



Taco Hoekwater

2.3 Font creation

It is strange that this program that is a direct
descendant of metafont is not capable of creating
any kind of font directly. Not very valuable perhaps,
but PostScript Type 3 should be easily doable, and
PostScript Type 1 with fairly small amounts of work.

2.4 Font embedding

When fonts are used for labelling point in a figure,
metaposts output is no longer self-contained: it
relies on external postprocessing to provide the
actual font files instead of embedding them in the
output.

Current metapost also does not understand
reencoding of fonts, nor the use of TeX’s virtual font
mechanism.

Font embeddding, subsetting en reencoding are
fairly simple additions that will make it into the next
release of te program. There are currently no plans
for the supprot virtual fonts, as far as I know.

2.5 Erasing and transparancy

Metapost does not have an eraser operator like
metafonts unfill. If you want something to have
’no color’ than you can choose between not drawing
on that area at all (usually possible but often very
cumbersome) or drawing that area twice, using the
color of the background in the second stage.

It would not be trivial to add this functionality,
but it is a very much desired one. Related requests
have been made for calculating the intersection,
difference, merge etc. of two overlapping paths.

2.6 Output formats

Requests have been made to output other file
formats instead of EPS. Most often requested are
a bitmap format like PNG, and Scalable Vector
Graphics. Especially that last format would improve
the re-usability of Metapost graphics outside of the
TEX environment.

Sometimes PDF is requested as well, but the
conversion from EPS to PDF is a rather simple one
that has been solved already outside of metapost,
so there seems little point in putting much effort in
that.

2.7 Alternative color models

Sometimes requests are made for alternate color
models, esp. CMYk. This would aid the adoption
of metapost in the traditional printing workflow.

2.8 Tagged paths

For postprocessing it would be handy to have ‘spe-
cial’ information that tags along with a path, just
like it’s color and transformation matrix. Normally
all specials end up at the top of the output file, and
that makes it hard to target a specific part of a figure
for postprocessing tricks.

3 Quality

In my search to come up with a list of possible
maladies that metapost may be suffering from, I
came upon a very handy page on Wikipedia: http:
//en.wikipedia.org/wiki/Software quality. It
lists a number of factors that determine the quality
of a piece of software, along with a set of diagnostic
questions that can be asked for each of the factors.

The italic text below is straight from that
wikipedia page on the day I wrote this (april
7, 2006). The intermittent (upright) text is my
assessment of the state of metapost.

A scheme which could be used for evaluating soft-
ware quality factors is given below. For every char-
acteristic, there are a set of questions which are rel-
evant to that characteristic. Some type of scoring
formula could be developed based on the answers to
these questions, from which a measure of the char-
acteristic may be obtained.

3.1 Understandability

Are variable names descriptive of the physical or
functional property represented? Do uniquely recog-
nisable functions contain adequate comments so that
their purpose is clear? Are deviations from forward
logical flow adequately commented? Are all elements
of an array functionally related?

In general, I believe metapost scores fairly well
in this regard, but it could be better. Most of the
builtin (or predefined) variables and functions have
acceptable names (except ‘ditto’ perhaps). It is easy
to guess what the symbols for operators are (except
‘++’, that stands for pythagorean addition, not the
unary incrementation)

A little bit daunting for a first-time user may
be the expression syntax. There are quite a
lot of named operators, of which a number like
‘intersectiontimes’ and ‘transformed’ are infix forms
where most people would have expected a function
call instead. Also, flow control operations can occur
in the middle of expressions. While this makes it
harder for new users to understand ‘wizard’ code, it

1002 TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting



METAPOST: terminally ill or just playing dead?

is not an immediate problem: it is still possible to
write expressions that are much more traditional.

A bigger problem are variables. In particular,
the square brackets in ‘a[]’ do not stand for ‘array
contruction’, but instead simply mean ‘any numeric
value following ‘a”. Variable names like ‘a[1.5]’ are
perfectly acceptable metapost syntax. There is not
even an implied array logic: ‘a[4]’ may be a numeric
value, while simultaneously ‘a[3]’ may be a path or
a boolean or even completely undefined.

Advanced macro use is often confusing and its
definition syntax quite arcane. The situation is not
unlike that in TeX, but metaposts macros are more
versatile and therefore even trickier to comprehend
fully. But, just like for expression syntax, write
simple macros is indeed simple.

3.2 Completeness

Does the program contain all referenced subprograms
not available in the usual systems library? Are all
parameters required by the program available? Are
all inputs required by the program available?

Technically, the font metrics to be used to type-
set labels are missing from the metapost distribu-
tion, but normally metapost is shipped alongside
TEX, with a wealth of usable fonts.

3.3 Conciseness

Is all code reachable? Is any code redundant? How
many statements within loops could be placed outside
the loop, thus reducing computation time? Are
branch decisions too complex?

It is safe to say that metaposts actual source
code is concise, almost in the extreme. In part this is
thanks to the use of the web programming language
that provides macros and reusable code modules.
Another part is because it is already a rather old
program and it reached the limits of the computers
that were available at the time it was first developed.

3.4 Portability

Does the program depend upon system or library
routines unique to a particular installation? Have
machine-dependent statements been flagged and com-
mented? Has dependency on internal bit repres-
entation of alphanumeric or special characters been
avoided?

Metapost is very portable indeed, because it
does almost all of the work one would expect to be
done by the system libraries itself. There are only
a few, really minor, bits that need changing for any

new platform (not just the ‘posix-like’ small systems
that are targeted by the GNU build tools, but even
systems with different byte sizes or character sets).

3.5 Consistency

Is one variable name used to represent difficult
physical entities in the program? Does the program
contain only one representation for physical or
mathematical constants? Are functionally similar
arithmetic expressions similarly constructed? Is a
consistent scheme for indentation used?

When a program is essentially created by one
single person over a fairly short period of time,
one expects it to be quite consistent internally.
Metapost is no exception.

3.6 Maintainability

Has some memory capacity been reserved for future
expansion? Is the design cohesive, i.e., each mod-
ule has recognisable functionality? Does the soft-
ware allow for a change in data structures (object-
oriented designs are more likely to allow for this)?
If a functionally-based design (rather than object-
oriented), is a change likely to require restructuring
the main-program, or just a module?

This is a definate weak spot. The functionality
of the separate modules is pretty well contained,
and most access to the data structures is through
accessor macros, so that is OK.

But: a lot of the communication between the
modules takes place through global variables, lots of
flow control actively uses the fall-through / default
branch, and the used data structures are stuffed full
with information to the very last bit.

It is not at all easy to extend metapost.

3.7 Testability

Are complex structures employed in the code? Does
the detailed design contain clear pseudo-code? Is the
pseudo-code at a higher level of abstraction than the
code? If tasking is used in concurrent designs, are
schemes available for providing adequate test cases?

In a way, the actual code of metapost simu-
taneously is pseudo-code, an intended side-effect of
the use of the web system of literate programming.

Also, we have a marvellous unit-test suite (trap
test). Metapost (like its siblings metafont and tex)
scores very well on this point.

TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting 1003



Taco Hoekwater

3.8 Usability

Is a GUI used? Is there adequate on-line help?
Is a user manual provided? Are meaningful error
messages provided?

There is a user manual, but it is not as good
as it could be. The manual is not very large and
makes quite some references to the metafont book.
While this makes sense from the standpoint of a
documentation writer (more economical and less
chance of errors), it is very unpractical for a user.
Especially since the metafont book has to be bought
and is therefore not readily available to everybody.

I personally believe the error messages are nice
and easy to understand, but I have been told
by other people that this is very much a matter
of opinion. It may be that metapost sometimes
provides too much information, instead of not
enough.

3.9 Reliability

Are loop indexes range tested? Is input data checked
for range errors? Is divide-by-zero avoided? Is
exception handling provided?

The compiled source code of metapost has lots
of tests to make sure that variables are within ranges
etcetera. Even more tests are in place to make
sure that user-supplied data cannot contain invalid
values. Strict bounds checking is performed on every
array.

About the only thing that metapost does not
guard you against is the incorrect use of recursive
macros. Runaways are not detected until it runs
out of memory. But since it does all of its memory
maintenance internally, that does not pose a threat
to the rest of your system.

But metapost is unreliable in a completely
different field: the possible input range for numerics
is very limited, and the precision of its calculations is
far from perfect. The hope is that this situation can
be cured by applying a set of patches that improves
the allowed range as well as precision.

3.10 Structuredness

Is a block-structured programming language used?
Are modules limited in size? Have the rules for
transfer of control between modules been established
and followed?

The descriptive text parts of the web source
normally set out to define the rules for control trans-
fer and the programming interface for the module at
hand. While those rules are not always adhered to

rigidly, the exceptions are always documented in the
text parts as well.

Metapost is quick a well-structured program,
but it is so by choice, not by force.

3.11 Efficiency

Have functions been optimized for speed? Have
repeatedly used blocks of code been formed into sub-
routines?

No problems here: the efficiency of the compiled
metapost code is near optimal. Whether user-
supplied macros are equally efficient is up to user,
of course.

3.12 Security

Does the software protect itself and its data against
unauthorized access and use? Does it allow its op-
erator to enforce security policies? Are appropriate
security mechanisms in place? Are those security
mechanisms implemented correctly? Can the soft-
ware withstand attacks that must be expected in its
intended environment? Is the software free of errors
that would make it possible to circumvent its security
mechanisms? Does the architecture limit the impact
of yet unknown errors?

Metapost is as secure as it should be for the
tasks it has, I think. There is limited support
in some environments to execute other system
commands, but that ability can in all cases be
turned off by the supervisor. Metapost has the
ability to write and read files, but it is not normal
for it to be started automatically by the operating
system, so while the chance of malware being
written for it is negligible.

4 Conclusion

The title of this paper raised the question ‘Termin-
ally ill or just playing dead?’ Neither seems to be the
case. Metapost does not appear to be doing all that
bad after considation of all the points on the check-
list regarding quality. But, on the other hand, there
are some definate problems, and not all is cured by
simple a kiss on the head.

1004 TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting


