
Najaar 2002 1

Taco Hoekwatercontext
CONTEXT System Macros
part 1: General macros

keywords
macro programming, context, api, general

abstract
All large macro packages for TEX have the need for a number of low--level macros to easy the
programming effort. This is definately true for the Context package, where the extensive use
of key--value pairs and the multilingual interface introduce extra complications to the already
tricky art of TEX programming.
Some of these internal macros are real gems, and nearly all of them can also be used in your
own source documents. Although most of Context is described in the source code, some-
times the explanations are too technical for a casual user, and some of the documentation, es-
pecially the examples, is still in dutch.
This series of articles will try to highlight the most usable commands of the internal macro lay-
er, using english examples, and removing most of the technical stuff (like the definitions of the
macros themselves, and the optimization history).
Disclaimer: Quite a lot of the explanation text is copied from source code documentation by
Hans Hagen. Always assume that the errors are mine and the good jokes are his.

Introduction

This article will mostly deal with the filesyst-gen.tex. All except the first couple of
macros appear in this file, which is input immediately after the inclusion of a stripped
down version of the plainTEX format. Most of the following macros are very basic, most
of them are related to programming constructs like flow control (\if statements), data
structures (comma separated lists), and definitions.

Rudiments

\contextversion contains theContext version string. If you need to make sure you\contextversion
are running underContext, check for this macro. It is not defined insyst-gen but in
context.tex. This is becausesyst-gen is sometimes loaded underLatex.

The expansion of the macro is something like this:2002.5.24

These macros delimit code that is executed conditionally.\beginTEX and\beginETEX are \beginTEX
\endTEX
\beginETEX
\endETEX
\beginOMEGA
\endOMEGA

mutually exclusive, depending on whether or not the format file was compiled under an
ε-TEX--enabled executable. A typical way of setting up your code to useε-TEX where
available is like this:

\beginTEX
\def\ifundefined#1%

{\expandafter\ifx\csname#1\endcsname\relax}
\endTEX

\beginETEX \ifcsname
\def\ifundefined#1%

{\unless\ifcsname#1\endcsname}
\endETEX

Code delimited by\beginOMEGA . . . \endOMEGA is only executed ifContext runs under
Omega, and ignored otherwise.

context Taco Hoekwater

2 MAPS

The optional argument after the\begin... can be used to give information to the
viewer: the example above will print the following string to the terminal:

system (E-TEX) : [line 833] \ifcsname

Because modules can be used in various contexts, we want to be able to prevent macor\abortinputifdefined

files from being loaded more than once. This can be done using:

\abortinputifdefined\command

where\command is a command defined in the module to be loaded only once.
For example,syst-gen implements\writestatus, and therefore it starts with:

\abortinputifdefined\writestatus

Actually you don’t need this macro for modules, since\usemodule does it’s own book-
keeping. It is intended for files that are loaded via theTEX primitive \input.

We can shield macros from users by using some special characters in their names. Some\protect
\unprotect characters thatTEX normally does not consider to be letters (and therefore used) are:@,

! and ?. Before and after the definition of protected macros, we have to change the
〈catcode〉 of these characters. This is done by\unprotect and\protect, for instance:

\unprotect
\def\!test{alfa}
\protect

The newly defined command\!test can of course only be called upon when we are in
the \unprotect’ed state, otherwiseTEX reads the command\!, followed by the word
test and probably complains loudly about not being in math mode.

The protection/unprotection commands can be nested (unlike\makeatletter in La-
tex). This nesting is a convenience, since it allows one to use the protection pair regard-
less of whether protection is already turned on.

When the nesting becomes deeper than one level, the system reports the current pro-
tection level.

It is a good habit to always start your macro files with\unprotect and end them with
\protect.

Mnemonics and aliases

In Context we sometimes manipulate the〈catcodes〉 of certain characters. Because we\@@escape
\@@begingroup

\@@endgroup
\@@mathshift
\@@alignment
\@@endofline

\@@parameter
\@@superscript

\@@subscript
\@@ignore
\@@space

\@@letter
\@@other

\@@active
\@@comment

\other
\active

are not that good at numbers, we introduce some symbolic names. This makies it easier
to key in things like this:

\catcode‘@\@@letter

If you don’t understand the names of the macros, you can look them up in theTEXbook.

Two of these symbolic names are actually used so often that they even have non-protected
aliases:\other and\active.

We often need a space as defined inPlain TEX. BecauseContext cannot be sure that\normalspace

\space is not redefined, it internally uses an alias:\normalspace.
When dealing withContext, please remember tonever (re-)define macros that start

with \normal.... Weird, unexpected things can, and probably will, occur!

Context System Macros context

Najaar 2002 3

These are constant counters, corresponding to0, 1 and−1. \zeropoint
\plusone
\minusoneTemporary variables

Because we often need counters on a temporary basis, we define the〈counter〉 \scratchcounter
\scratchdimen
\scratchskip
\scratchmuskip
\scratchbox
\globalscratchbox
\scratchtoks
\ifdone
\!!

\scratchcounter. This is a real〈counter〉, and not a pseudo one, as we will meet further
on. The others are analogous scratch registers.

A warning is in order here. Yes, you can use these registers in your own macrocode.
But not across calls to internalContext macros. WhileContext always makes sure that
the registers are cleared on entry to the call, it usually doesn’t bother to restore your user
supplied value when it returns.

Context also uses a rather large collection of other internal scratch registers. Their
names all look like this:\!!XXXXXY, whereXXXXX is something like ‘count’ or ‘depth’,
andY is a letter starting froma (e.g.\!!counta). The fact that their names start with!! is
a clear statement: Don’t touch them, it’s dangerous. If you need scratch registers, define
your own.

Context uses yet another set of constants and variables to store all sorts of string values\s!
\c!
\p!
\v!
\@@
\??

in (macro names occupy less space inTEX’s memory than the strings themselves).
For this reason, you should also not touch the definitions of macros that start with

\s! (constant string),\c! (constant),\p! (parameter),\v! (variable),\@@ (multi--lingual
interface parameter expansion),\?? (multi--lingual interface parameter call).

Redefining these macros can have disastrous results.

Expansion control

When in unprotected mode, to be entered with\unprotect, one can use\@EA as equiv- \@EA
\@EAEA
\@EAEAEA
\@EAEAEAEAEAEA

alent of\expandafter. \@EAEA expands to two expandafters,\@EAEAEA to three, and the
last one expands to\@EA\@EAEAEA\@EA.

Sometimes we pass macros as arguments to commands that don’t expand them before\expanded

interpretation. Such commands can be enclosed by\expanded, like:

\expanded{\setupsomething[\alfa]}

Such situations occur for instance when\alfa is a commalist or when data stored in
macros is fed to index of list commands. If needed, one should use\noexpand inside the
argument. Later on we will meet some more clever alternatives to this command.

These two commands make macros more readable by hiding a lot of\expandafter’s. \expandoneargafter
\expandtwoargsafter
\fullexpandoneargafter
\fullexpandtwoargsafter

They expand the arguments after the first command.

\expandoneargafter \command{\abc}
\expandtwoargsafter\command{\abc}{\def}
\fullexpandoneargafter \command{\abc}
\fullexpandtwoargsafter\command{\abc}{\def}

These commands expect the arguments to be macros.

When expansion of a macro gives problems we can precede it by\unexpanded, like so: \unexpanded

\unexpanded\def\somecommand{...}

(if you are not familiar withContext: this is the same command as\protect in Latex).
It seems that protection is one of the burdens of developers of packages, so maybe that’s
why in ε-TEX protection is solved in a more robust way.Context uses that (more robust)
solution if it is available, and otherwise tries it’s best to emulate it using rather tricky
macros.

context Taco Hoekwater

4 MAPS

Expansion problems can get quite complex. There are some other internal macros that
can help harnassing it, but it is fairly unlikely that you will need them. If you believe you
do, read thesyst-gen source code.

Argument grabbing and handling

This set of macros does nothing, except that they get rid of a number of arguments, up to\gobbleoneargument
\gobbletwoarguments

\gobblethreearguments
\gobble...arguments

ten arguments altogether. This type of macro is especially useful when you don’t really
need the user supplied argument(s) to your macro.

For example, assume you need a macro that would be called like this:

\checkoddpage{this page is odd}

The ‘best’ definition for that macro is this:

\def\checkoddpage{%
\ifodd\pageno

\expandafter\message
\else

\expandafter\gobbleoneargument
\fi

}

The ‘simplistic’ alternative macro definition:

\def\checkoddpage#1{%
\ifodd\pageno

\message{#1}%
\fi

}

actually runs slower, since the argument is scanned twice: once by\checkoddpage, and
once by\message.

These macros are trivial, but quite important in some applications. Here is the definition,\firstofoneargument
\firstoftwoarguments

\firstofthreearguments
\firstoffourarguments

\secondoftwoarguments
\secondofthreearguments
\secondoffourarguments
\thirdofthreearguments
\thirdoffourarguments

\fourthoffourarguments

which is also the example code:

\long\def\firstofoneargument #1{#1}
\long\def\firstoftwoarguments #1#2{#1}
\long\def\firstofthreearguments #1#2#3{#1}
\long\def\firstoffourarguments #1#2#3#4{#1}
\long\def\secondoftwoarguments #1#2{#2}
\long\def\secondofthreearguments #1#2#3{#2}
\long\def\secondoffourarguments #1#2#3#4{#2}
\long\def\thirdofthreearguments #1#2#3{#3}
\long\def\thirdoffourarguments #1#2#3#4{#3}
\long\def\fourthoffourarguments #1#2#3#4{#4}

The need for these commands appears when you have to strip braces from a (saved)
argument. For instance, when you have a list with ‘subelements’, the list expansion tends
to look like this:

{{0}{0},{0}{1},{1}{0},{1}{1}}

(A two by two matrix, stored as a commalist). Imagine that you want to grab the row
numbers and do something with it. This definition:

\def\doprocessrow#1{...what i really want to do...}
\def\processrow#1{\expandafter\firstoftwoarguments\doprocessrow}

Context System Macros context

Najaar 2002 5

\processcommalist[{0}{0},{0}{1},{1}{0},{1}{1}]\processrow

does the trick.

Definitions and assignments

TEX’s primitive \csname can be used to construct all kind of commands that cannot be\setvalue
\setgvalue
\setevalue
\setxvalue
\letvalue
\getvalue
\resetvalue

defined with\def and\let. Every macro programmer sooner or later wants macros like
these.

\setvalue {name}{...} = \def\name{...}
\setgvalue {name}{...} = \gdef\name{...}
\setevalue {name}{...} = \edef\name{...}
\setxvalue {name}{...} = \xdef\name{...}
\letvalue {name}=\... = \let\name=\...
\getvalue {name} = \name
\resetvalue {name} = \def\name{}

As we will see,Context uses these commands many times, which is mainly due to its
object oriented and parameter driven character.

The next macro can be very useful when using\csname like in: \strippedcsname

\csname if\strippedcsname\something\endcsname

This expands to\ifsomething.

Setups can be optional. A command expecting a setup is prefixed by\complex, a com- \complexorsimple
\complexorsimpleemptymand without one gets the prefix\simple. Commands like this can be defined by:

\complexorsimple\command

When\command is followed by a[setup], then

\complexcommand [setup]

executes, else we get

\simplecommand

An alternative for\complexorsimple is:

\complexorsimpleempty {command}

Depending on the presence of[setup], this one leads to one of:

\complexcommando [setup]
\complexcommando []

Many Context commands started as complex or simple ones, but changed into more
versatile (more object oriented) ones using the\get..argument commands later in their
existence.

The previous commands are used that often that we found it worthwile to offer two more\definecomplexorsimple
\definecomplexorsimpleemptyalternatives.

These commands are called as:

\definecomplexorsimple\command

Of course, we must have available

\def\complexcommand[#1]{...}
\def\simplecommand {...}

Using this construction saves a few strings now and then.

context Taco Hoekwater

6 MAPS

We won’t go into details here, but the general form of this using this command is:\definestartstopcommand

\definestartstopcommand\somecommand\e!specifier{arg}{arg}%
{do something with arg}

This expands to something like:

\def\somecommand arg \startspecifier arg \stopspecifier%
{do something with arg}

The arguments can be anything reasonable, but double#’s are needed in the specification
part, like:

\definestartstopcommand\somecommand\e!specifier{[##1][##2]}{##3}%
{do #1 something #2 with #3 arg}

which becomes:

\def\somecommand[#1][#2]\startspecifier#3\stopspecifier%
{do #1 something #2 with #3 arg}

Actually, this macro is never used inContext, but it used to be part of constructions like
\placeformula.

Branches and decisions

When Pragma ADE started usingTEX in the late eighties, their first experiences with\doifnextcharelse

programming concerned a simple shell aroundLatex. The commands probably used
most atPragma ADE are the itemizing ones. One of those initial shell commands took
care of an optional argument, that enabled the specification of the item symbol to be
sued. Without understanding anything they were able to locate aLatex macro that could
be used to inspect the next character.

It is that macro that the ancester of the next one presented here. It executes one of two
actions, dependant of the next character. Disturbing spaces and line endings, which are
normally interpreted as spaces too, are skipped.

\doifnextcharelse {char} {then ...} {else ...}

The standard way of testing if a macro is defined is comparing its meaning with another\doifundefined
\doifdefined

\doifundefinedelse
\doifdefinedelse

\doifalldefinedelse

undefined one, aptly named\undefined. To garantee correct working of this set of macros,
\undefined maynever be defined by a user!

\doifundefined {string} {...}
\doifdefined {string} {...}
\doifundefinedelse {string} {then ...} {else ...}
\doifdefinedelse {string} {then ...} {else ...}
\doifalldefinedelse {commalist} {then ...} {else ...}

Programming inTEX differs from programming in procedural languages likeModula.\doif
\doifelse
\doifnot

This means that one — well, let me speek for myself — tries to do the things in the
well known way. Therefore the next set of\ifthenelse commands were between the
first ones we needed. A few years later, the opposite became true: when programming in
Modula, I sometimes miss handy things like grouping, runtime redefinition, expansion
etc. WhileModula taught me to structure,TEX taught me to think recursive.

\doif {string1} {string2} {...}
\doifnot {string1} {string2} {...}
\doifelse {string1} {string2} {then ...}{else ...}

These macros test string equality of the (expanded) first two arguments.

Context System Macros context

Najaar 2002 7

We complete our set of conditionals with: \doifempty
\doifemptyelse
\doifnotempty\doifempty {string} {...}

\doifnotempty {string} {...}
\doifemptyelse {string} {then ...} {else ...}

This time, the string is not expanded. Remember to expand it yourself where needed.

We can check if a string is present in a comma separated set of strings. Depending on the\doifinset
\doifnotinset
\doifinsetelse

result, some action is taken.

\doifinset {string} {string,...} {...}
\doifnotinset {string} {string,...} {...}
\doifinsetelse {string} {string,...} {then ...} {else ...}

The second argument is the comma separated set of strings. If the first string expands
‘empty’, it is considered to bealways in the set. The comma separated set is not expand-
ed.

Probably the most time consuming tests are those that test for overlap in sets of strings.\doifcommon
\doifnotcommon
\doifcommonelse\doifcommon {string,...} {string,...} {...}

\doifnotcommon {string,...} {string,...} {...}
\doifcommonelse {string,...} {string,...} {then ...} {else ...}

We can check for the presence of a substring in a given sequence of characters. \doifinstringelse
\doifincsnameelse

\doifinstringelse {substring} {string} {then ...} {else ...}

The next alternative proved to be upto twice as fast on tasks like checking reserved words
in pretty verbatim typesetting. This is mainly due to the fact that passing (expanded)
strings is much slower that passing a macro.

\doifincsnameelse {substring} {\string} {then ...} {else ...}

Where\doifinstringelse does as much expansion as possible, the latter alternative does
minimal (one level) expansion.

The next macro executes a command depending of the outcome of a test on numerals.\doifnumberelse

\doifnumberelse {string} {then ...} {else ...}

The macro accepts123, abc, {}, \anumber and\the\count....
The definition of this macro is extremly ugly, or extremely beautiful, depending on

how you feel aboutTEX macro expansion. It is the first of only a few that will actually
appear in this series of articles, I promise.

\long\def\doifnumberelse#1%
{\ifcase0\ifcase1#1\or\or\or\or\or\or\or\or\or\else1\fi\space

\expandafter\secondoftwoarguments
\else

\expandafter\firstoftwoarguments
\fi}

Cases

Context makes extensive use of a sort of case or switch command. Depending of the\processaction
\processfirstactioninset
\processallactionsinset

presence of one or more provided items, some actions is taken. These macros can be
nested without problems.

\processaction [x] [a=>\a,b=>\b,c=>\c]
\processfirstactioninset [x,y,z] [a=>\a,b=>\b,c=>\c]
\processallactionsinset [x,y,z] [a=>\a,b=>\b,c=>\c]

context Taco Hoekwater

8 MAPS

This macro is most often used in the key–value parser, like in this (simplified) example,
where the user has saidwidth=small or something similar:

\processaction
[\TESTwidth] % should expand to ’small’
[small=>\message{small was chosen},
medium=>\message{medium was chosen}]

You can supply both adefault action and an action to be undertaken when anunknown
value is met:

\processallactionsinset
[x,y,z]
[a=>\a,

b=>\b,
c=>\c,

default=>\default,
unknown=>\unknown{... \commalistelement ...}]

If the first argument is empty, this macro scans the list for the keyworddefault and
executes the related action, if present. If the first argument is not empty but also not in
the list, the action related tounknown is executed. Both keywords must be at the end of
list #2. Afterwards, the actually found keyword is available in\commalistelement.

Sometimes an action needs to be undertaken that depends only on the first character of\getfirstcharacter
\firstcharacter something (for instance, checking if some string represents a number or not). This macro

get this character and puts it in\firstcharacter.

\getfirstcharacter {string}

Comma separated lists

We’ve already seen some macros that take care of comma separated lists. Such list can\processcommalist

be processed with

\processcommalist[string,string,...]\commando

The user supplied command\commando receives one argument: the string. This com-
mand permits nesting and spaces after commas are skipped. Empty sets are no problem.

\def\dosomething#1{(#1)}

1: \processcommalist [\hbox{a,b,c,d,e,f}] \dosomething \par
2: \processcommalist [{a,b,c,d,e,f}] \dosomething \par
3: \processcommalist [{a,b,c},d,e,f] \dosomething \par
4: \processcommalist [a,b,{c,d,e},f] \dosomething \par
5: \processcommalist [a{b,c},d,e,f] \dosomething \par
6: \processcommalist [{a,b}c,d,e,f] \dosomething \par
7: \processcommalist [] \dosomething \par
8: \processcommalist [{[}] \dosomething \par

Empty arguments are not processed. Empty items (,,) however are treated.
And here is the result:
1: (a, b, c, d, e, f)
2: (a,b,c,d,e,f)
3: (a,b,c)(d)(e)(f)
4: (a)(b)(c,d,e)(f)
5: (ab,c)(d)(e)(f)
6: (a,bc)(d)(e)(f)

Context System Macros context

Najaar 2002 9

7:
8: ([)

Quitting a commalist halfway can be done by using\quitcommalist within the execution \quitcommalist

macro.

When a list is saved in a macro, we can use a construction like: \processcommacommand

\expandafter\processcommalist\expandafter[\list]\dosomething

Such solutions suit most situations, but we wanted a bit more.

\processcommacommand[string,\stringset,string]\dosomething

where\stringset is a predefined set, like:

\def\first{zeroeth,first}
\def\second{last}

\processcommacommand[\first]\message
\processcommacommand[\first,second,third]\message
\processcommacommand[\first,between,\second]\message

Commands that are part of the list are expanded, so the use of this macro has its limitita-
tions.

The argument to\dosomething is not delimited. Because we often use[] as delimiters, \processcommalistwithpara..

we also have:

\processcommalistwithparameters[string,string,...]\dosomething

where\dosomething looks like:

\def\dosomething[#1]{... #1 ...}

Some of the commands mentioned earlier are effective but slow. When one is des-\rawdoinsetelse
\rawprocesscommalist
\rawprocessaction

perately in need of faster alternatives and when the conditions are predictable safe,
the \raw alternatives come into focus. A major drawback is that they do not take
\c!constants into account, simply because no expansion is done. (This is not a problem
for \rawprocesscommalist), because this macro does not compare anything. Expandable
macros are permitted as search string for\rawdoifinsetelse.

\rawdoifinsetelse{string}{string,...}{...}{...}
\rawprocesscommalist[string,string,...]\commando
\rawprocessaction[x][a=>\a,b=>\b,c=>\c]

Spaces embedded in the list, for instance after commas, spoil the search process. The
gain in speed depends on the length of the argument (the longer the argument, the less
gain).

When we process the lista,b,c,d,e, the raw routine takes over30% less time, when
we feed20+character strings we gain about20%.

It’s possible to get an element from a commalist or a command representing a commalist.\getfromcommalist
\getfromcommacommand
\commalistelement
\getcommalistsize
\getcommacommandsize

\getfromcommalist [string] [n]
\getfromcommacommand [string,\strings,string,...] [n]

The difference betwee the two of them is the same as the difference between
\processcomma.... The found string is stored in\commalistelement.

Because0, 1 and2 are often asked for, the macros are optimized on those numbers.
We can calculate the size of a comma separated list by using:

\getcommalistsize [string,string,...]
\getcommacommandsize [string,\strings,string,...]

context Taco Hoekwater

10 MAPS

Afterwards, the length is available in the macro\commalistsize (not a〈counter〉).
Watertight (and efficient) solutions are hard to find, due to the handling of braces

during parameters passing and scanning. Nevertheless, the macros function quite well.

For low level (fast) purposes, we can also use the next alternative, which can handle up\dogetcommalistelement
\dogetcommacommandelement to 8 elements at most.

\dogetcommalistelement1\from a,b,c\to\commalistelement

It’s ugly, but it is very fast indeed. Keep in mind that this version doesnot strip leading
spaces from the list items.

Assignments and parameters

Assignments are the backbone ofContext. Abhorred by the concept of style file hack-\doassign
\undoassign

\doassignempty
ing, we took a considerable effort in building a parameterized system. Unfortunately
there is a price to pay in terms of speed. Compared to other packages and taking the
functionality ofContext into account, the total size of the format file is still very accept-
able. Now how are these assignments done.

Assignments can be realized with:

\doassign[label][variable=value]
\undoassign[label][variable=value]

and:

\doassignempty[label][variable=value]

These macros are a syntactic rewrite for the ‘set’, ‘clear’ and ‘initialize’ actions:

\def\labelvariable{value} % \doassign
\def\labelvariable{} % \undoassign
\doifundefined{\labelvariable}

{\def\labelvariable{value}} % \doassignempty

Using the assignment commands directly is not our ideal of user friendly interfacing, so\getparameters
\geteparameters
\getgparameters

\forgetparameters

we take some further steps.

\getparameters [label] [...=...,...=...]

Again, the label identifies the category a variable belongs to. The second argument can
be a comma separated list of assignments. Duplicates are allowed, later appearances
overrule earlier ones.

\getparameters
[demo]
[alfa=1,
beta=2]

is equivalent to

\def\demoalfa{1}
\def\demobeta{2}

Some explanation of the inner workings ofContext is in order here to make sure the
source is understandable for readers, since the actual internal usage is a bit more complex
than this.

In the pre--multi--lingual (simple) stadiumContext took the next approach. With these
definitions (that are mainly there to conserveTEX’s string space):

Context System Macros context

Najaar 2002 11

\def\??demo {@@demo}
\def\!!width {width}
\def\!!height {height}

calling

\getparameters
[\??demo]
[\!!width=one,
\!!height=2]

lead to:

\def\@@demowidth{one}
\def\@@demoheight{2}

Because we want to be able to distinguish the!! pre--tagged user supplied variables
from internal counterparts, we will introduce a slightly different tag in the multi--lingual
modules. There we will usec! or v!, depending on the context.

The call will typically somewhat look like this:

\getparameters
[\??demo]
[\c!width=\v!one,
\c!height=2]

In the dutch interface, this would (e.g.) expand into:

\def\@@demobreedte{een}
\def\@@demohoogte{2}

but in the english interface it would become:

\def\@@demowidth{one}
\def\@@demoheight{2}

Context continues to function, because it never uses the explicit expansion, anywhere.
It always relies on the\s! and\v! definitions (remember I told you not to touch them?
this is why.)

Sometimes we explicitly want variables to default to an empty string, so we welcome:\getemptyparameters

\getemptyparameters [label] [...=...,...=...]

SomeContext commands take their default setups from others. All commands that are\copyparameters

able to provide backgounds or rules around some content, for instance, default to the
standard command for ruled boxes. In situations like this we can use:

\copyparameters [to-label] [from-label] [name1,name2,...]

For instance

\copyparameters
[\??internal][\??external]
[\c!width,\c!height]

Leads to (english version):

\def\@@internalwidth {\@@externalwidth}
\def\@@internalheight {\@@externalheight}

context Taco Hoekwater

12 MAPS

A lot of Context commands take optional arguments, for instance:\doifassignmentelse

\dothisorthat[alfa,beta]
\dothisorthat[first=foo,second=bar]
\dothisorthat[alfa,beta][first=foo,second=bar]

Although a combined solution is possible, we prefer a separation between argument key-
words and parameter assignments. The next command takes care of propper handling of
such multi--faced commands.

\doifassignmentelse {...} {then ...} {else ...}

A slightly different approach is\checkparameters, which also checks on the presence of\checkparameters
\ifparameters a=, just like the previous macro.

\checkparameters[argument]

The boolean\ifparameters can be used afterwards to verify that there were assignments
in the supplied argument.

When working with delimited arguments, spaces and lineendings can interfere. The next\dosingleargument
\dodoubleargument
\dotripleargument

\doquadrupleargument
\doquintupleargument
\dosixtupleargument

\doseventupleargument

set of macros usesTEX’ internal scanner for grabbing everything between arguments.
Forgive me the funny names.

\dosingleargument\command = \command[#1]
\dodoubleargument\command = \command[#1][#2]
\dotripleargument\command = \command[#1][#2][#3]
\doquadrupleargument\command = \command[#1][#2][#3][#4]
\doquintupleargument\command = \command[#1][#2][#3][#4][#5]
\dosixtupleargument\command = \command[#1][#2][#3][#4][#5][#6]
\doseventupleargument\command= \command[#1][#2][#3][#4][#5][#6][#7]

These macros are used in the following way:

\def\docommand[#1][#2]%
{... #1 ... #2 ...}

\def\command%
{\dodoubleargument\docommand}

So\dodoubleargument leads to:

\docommand[#1][#2]
\docommand[#1][]
\docommand[][]

The macros above insure that the resulting call always has the correct number of bracket\iffirstargument
\ifsecondargument
\ifthirdargument

\iffourthargument
\iffifthargument

\ifsixthargument
\ifseventhargument

pairs, even if the user did not supply all of the options. In this case, a number of trailing
bracket pairs are empty. A set of related\if boolemas is initialized to give you access to
the number of user supplied parameters.

These maybe too mysterious macros enable us to handle more than one setup at once.\dosingleargumentwithset
\dodoubleargumentwithset

\dodoubleemptywithset
\dotripleargumentwithset

\dotripleemptywithset

\dosingleargumentwithset \command[#1]
\dodoubleargumentwithset \command[#1][#2]
\dotripleargumentwithset \command[#1][#2][#3]
\dodoubleemptywithset \command[#1][#2]
\dotripleemptywithset \command[#1][#2][#3]

Context System Macros context

Najaar 2002 13

The first macro calls\command[##1] for each string in the set#1. The second one calls
for \commando[##1][#2] and the third, well one may guess. These commands support
constructions like:

\def\dodefinesomething[#1][#2]%
{\getparameters[\??xx#1][#2]}

\def\definesomething%
{\dodoubleargumentwithset\dodefinesomething}

Which accepts calls like:

\definesomething[alfa,beta,...][variable=...,...]

Now a whole bunch of variables like\@@xxalfavariable and \@@xxbetavariable is
defined.

We’ve already seen some commands that take care of optional arguments between[]. \dosinglegroupempty
\dodoublegroupempty
\dotriplegroupempty
\doquadruplegroupempty
\doquintuplegroupempty

The next two commands handle the ones with{}. They are called as:

\dosinglegroupempty \ineedONEargument
\dodoublegroupempty \ineedTWOarguments
\dotriplegroupempty \ineedTHREEarguments
\doquadruplegroupempty \ineedFOURarguments
\doquintuplegroupempty \ineedFIVEarguments

where\ineedONEargument takes one and the others two and three arguments, etcetera.
These macros were first needed inppchTEX. At first glance, the functionality sounds
trivial. But in fact, it is not. Consider this expanded input:

\def\test#1{\message{#1}}
\dosinglegroupempty\test {a}Text
\dosinglegroupempty\test Text

In the last line,#1 will not print the letterT, as would be ‘normal’TEX behaviour.
These macros can explictly take care of spaces, which means that the next definition

and calls are valid:

\dotriplegroupempty\test {a} {b} {c}
\dotriplegroupempty\test {a} {b}
\dotriplegroupempty\test

{a}
{b}

And alike.
Just as their[], they also set the\ifXXXXargument switches.

User interaction

This macro hardly needs explanation. It stopsTEX until you input something. \wait

Macros for showing messages. In the multi--lingual modules, we will also introduce a\writestring
\writeline
\writestatus
\statuswidth

mechanism for message passing. For the moment we stick to the core macros:

\writestring {string}
\writeline
\writestatus {category} {message}

Messages are formatted: the category appears within a fixed number of columns, on it’s
own, followed by a colon. One can provide the maximum width of the identification
string with the macro\statuswidth.

context Taco Hoekwater

14 MAPS

For debugging purposes we can enhance macros with the next alternative. Here\debuggerinfo

debuggerinfo stands for both a macro accepting two arguments and a boolean (in fact a
few macro’s too).

\debuggerinfo {subcategory} {message}

This message will only be output if\debuggerinfo is true. (it usually isn’t). If you need
to calculate something to be used inside themessage, embrace your calculating code with
\ifdebuggerinfo . . . \fi.

Context System Macros context

Najaar 2002 15

Index

\!! 3
\?? 3
\@@ 3
\@@active 2
\@@alignment 2
\@@begingroup 2
\@@comment 2
\@@endgroup 2
\@@endofline 2
\@@escape 2
\@@ignore 2
\@@letter 2
\@@mathshift 2
\@@other 2
\@@parameter 2
\@@space 2
\@@subscript 2
\@@superscript 2
\@EA 3
\@EAEA 3
\@EAEAEA 3
\@EAEAEAEAEAEA 3

a
\abortinputifdefined 2
\active 2

b
\beginETEX 1
\beginOMEGA 1
\beginTEX 1

c
\c! 3
\checkparameters 12
\commalistelement 9
\complexorsimple 5
\complexorsimpleempty 5
\contextversion 1
\copyparameters 11

d
\debuggerinfo 14
\definecomplexorsimple 5
\definecomplexorsimpleempty 5
\definestartstopcommand 6
\doassign 10
\doassignempty 10
\dodoubleargument 12
\dodoubleargumentwithset 12
\dodoubleemptywithset 12

\dodoublegroupempty 13
\dogetcommacommandelement 10
\dogetcommalistelement 10
\doif 6
\doifalldefinedelse 6
\doifassignmentelse 12
\doifcommon 7
\doifcommonelse 7
\doifdefined 6
\doifdefinedelse 6
\doifelse 6
\doifempty 7
\doifemptyelse 7
\doifincsnameelse 7
\doifinset 7
\doifinsetelse 7
\doifinstringelse 7
\doifnextcharelse 6
\doifnot 6
\doifnotcommon 7
\doifnotempty 7
\doifnotinset 7
\doifnumberelse 7
\doifundefined 6
\doifundefinedelse 6
\doquadrupleargument 12
\doquadruplegroupempty 13
\doquintupleargument 12
\doquintuplegroupempty 13
\doseventupleargument 12
\dosingleargument 12
\dosingleargumentwithset 12
\dosinglegroupempty 13
\dosixtupleargument 12
\dotripleargument 12
\dotripleargumentwithset 12
\dotripleemptywithset 12
\dotriplegroupempty 13

e
\endETEX 1
\endOMEGA 1
\endTEX 1
\expanded 3
\expandoneargafter 3
\expandtwoargsafter 3

f
\firstcharacter 8
\firstoffourarguments 4
\firstofoneargument 4

context Taco Hoekwater

16 MAPS

\firstofthreearguments 4
\firstoftwoarguments 4
\forgetparameters 10
\fourthoffourarguments 4
\fullexpandoneargafter 3
\fullexpandtwoargsafter 3

g
\getcommacommandsize 9
\getcommalistsize 9
\getemptyparameters 11
\geteparameters 10
\getfirstcharacter 8
\getfromcommacommand 9
\getfromcommalist 9
\getgparameters 10
\getparameters 10
\getvalue 5
\globalscratchbox 3
\gobble...arguments 4
\gobbleoneargument 4
\gobblethreearguments 4
\gobbletwoarguments 4

i
\ifdone 3
\iffifthargument 12
\iffirstargument 12
\iffourthargument 12
\ifparameters 12
\ifsecondargument 12
\ifseventhargument 12
\ifsixthargument 12
\ifthirdargument 12

l
\letvalue 5

m
\minusone 3

n
\normalspace 2

o
\other 2

p
\p! 3
\plusone 3
\processaction 7
\processallactionsinset 7
\processcommacommand 9

\processcommalist 8
\processcommalistwithparameters 9
\processfirstactioninset 7
\protect 2

q
\quitcommalist 9

r
\rawdoinsetelse 9
\rawprocessaction 9
\rawprocesscommalist 9
\resetvalue 5

s
\s! 3
\scratchbox 3
\scratchcounter 3
\scratchdimen 3
\scratchmuskip 3
\scratchskip 3
\scratchtoks 3
\secondoffourarguments 4
\secondofthreearguments 4
\secondoftwoarguments 4
\setevalue 5
\setgvalue 5
\setvalue 5
\setxvalue 5
\statuswidth 13
\strippedcsname 5

t
\thirdoffourarguments 4
\thirdofthreearguments 4

u
\undoassign 10
\unexpanded 3
\unprotect 2

v
\v! 3

w
\wait 13
\writeline 13
\writestatus 13
\writestring 13

z
\zeropoint 3

